
Heating, Ventilation, and Air Conditioning (HVAC) Systems utilize much energy, accounting for 40% of 
total building energy use. The temperatures in buildings are commonly held within narrow limits, leading 
to higher energy use. A field study was performed in two office buildings in Switzerland, and the 
measurements illustrated that the air temperature was relatively steady for most of the hours; it was higher 
than that prescribed by the building standards in Switzerland. Thus, designing energy-efficient building 
thermal control policies to reduce HVAC energy use while maintaining a dynamic indoor environment is 
essential.  Also, such an environment might not be the best for long-term exposure for the occupants. Studies 
suggest that a dynamic environment may be healthier for the human body. However, it is challenging to 
implement such a control policy, considering the energy efficiency of the HVAC System, dynamic indoor 
environment, and thermal acceptability requirements. Optimizing the dynamic and stochastic energy 
demand using conventional control techniques is tricky. The challenge becomes even more complicated 
when the requirements concerning the dynamic indoor environment and thermal acceptability of occupants 
are introduced. Thus, numerous factors influence the control policy in the built environment, i.e., indoor 
temperature, indoor relative humidity, indoor airspeed, occupancy profile, occupants' metabolic rate, 
clothing, comfort sensation, and energy expenditure. Implementing such a policy is challenging and usually 
hard to model as they may differ from case to case. We propose a deep RL-based framework for energy 
optimization and healthy thermal environment control in buildings to tackle this complexity. As an emerging 
control technique, deep Reinforcement Learning (DRL) has attracted growing research interest and 
demonstrated its potential to enhance building performance while addressing some limitations of other 
advanced control techniques.  
 
A novel deep RL algorithm with experience replay, called deep deterministic policy gradient (DDPG), has 
performed excellently in many continuous control tasks. DDPG is an RL approach for continuous control 
problems. In building controls, temperature, humidity, and airspeed, which are the predominant control 
variables, are all continuous. Therefore, DDPG is very suitable for addressing the problem in this scenario. 
Compared with other commonly used methods, such as Q-Learning and Deep Q-Learning, DDPG can avoid 
discretizing the control variables (e.g., temperature, humidity), which can improve control precision. It is a 
novel approach to designing the control of the indoor environment. The goal is to design an intelligent 
thermostat that can accurately control the indoor temperature based on data recorded from the indoor 
environment and the human body. To this objective, a prediction model for the energy expenditure in the 
human body from other more easily measurable physical and environmental parameters such as heart rate, 
muscular electrical activity, stress level, activity level, skin temperature, core body temperature, skin 
conductance, and ambient temperature has been developed. The prediction models leveraged the machine 
learning algorithms, particularly the long short-term memory (LSTM) networks. The results show that the 
models developed provide a good level of prediction accuracy during both low and medium-intensity 
activities, with the MAPE mostly lying in the range of 5-20%.  
 
The building thermal control has been developed as a cost-minimization problem, and DDPG is the primary 
choice for training the thermal control policy to create the DIET Controller. The DIET Controller modelled 
in Python was initially trained in a simulation environment with energy plus using the functional mockup 
unit (FMU) interface. Co-simulation results show that the DIET Controller can reduce the HVAC energy 
use by about 40% compared to the conventional rule-based controller and facilitate the creation of a dynamic 
environment promoting increased occupants' exposure to the temperature conditions between 18-21 °C. 
Subsequently, the DIET Controller was tested in real-operation with the ICE climate chamber. The 
experimental setup consisted of a single zone, which was set up with multiple environmental sensors 
gathering real-time data for the DIET Controller input. The experiments were usually conducted over 24 
hours with thermal dummies simulating the heat gains from occupants. Integrating the DRL-based control 
framework with the existing HVAC system was quite challenging, which the BACnet protocol facilitated 
in our case. Results showed that in actual operation, the DIET Controller could reduce energy use by 28-
64% compared to a rule-based control. Additionally, DIET Controller created a dynamic indoor 
environment for 96% of occupied hours. The results provide evidence that DIET Controller can be an 



effective method for controlling systems in real-world operation. However, it should be noted that the results 
are specific to the system and the setup used in the experiments, and the controller might need to be retrained 
and tuned for different systems and operating conditions. 
 


